Current knowledge on the Ralstonia solanacearum type III secretion system

نویسندگان

  • Núria S Coll
  • Marc Valls
چکیده

Ralstonia solanacearum was ranked in a recent survey the second most important bacterial plant pathogen, following the widely used research model Pseudomonas syringae (Mansfield et al., 2012). The main reason is that bacterial wilt caused by R. solanacearum is the world’s most devastating bacterial plant disease (http://faostat. fao.org), threatening food safety in tropical and subtropical agriculture, especially in China, Bangladesh, Bolivia and Uganda (Martin and French, 1985). This is due to the unusually wide host range of the bacterium, its high persistence and because resistant crop varieties are unavailable. In addition, R. solanacearum has been established as a model bacterium for plant pathology thanks to pioneering molecular and genomic studies (Boucher et al., 1985; Salanoubat et al., 2002; Cunnac et al., 2004b; Occhialini et al., 2005; Mukaihara et al., 2010). As for many bacterial pathogens, the main virulence determinant in R. solanacearum is the type III secretion system (T3SS) (Boucher et al., 1985; 1994), which injects a number of effector proteins into plant cells causing disease in hosts or a hypersensitive response in resistant plants. In this article we discuss the current state in the study of the R. solanacearum T3SS, stressing the latest findings and future perspectives. A regulatory cascade controls T3SS expression

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

How Xanthomonas type III effectors manipulate the host plant.

Pathogenicity of Xanthomonas and most other Gram-negative phytopathogenic bacteria depends on a conserved type III secretion (T3S) system which injects more than 25 different effector proteins into the plant cell. Extensive studies in the last years on the molecular mechanisms of type III effector function revealed that effector proteins with enzymatic functions seem to play important roles in ...

متن کامل

Isolation of Ralstonia solanacearum hrpB constitutive mutants and secretion analysis of hrpB-regulated gene products that share homology with known type III effectors and enzymes.

The Hrp type III secretion system (TTSS) is essential for the pathogenicity of the Gram-negative plant pathogen Ralstonia solanacearum. To examine the secretion of type III effector proteins via the Hrp TTSS, a screen was done of mutants constitutively expressing the hrpB gene, which encodes an AraC-type transcriptional activator for the hrp regulon. A mutant was isolated that in an hrp-inducin...

متن کامل

PopF1 and PopF2, two proteins secreted by the type III protein secretion system of Ralstonia solanacearum, are translocators belonging to the HrpF/NopX family.

Ralstonia solanacearum GMI1000 is a gram-negative plant pathogen which contains an hrp gene cluster which codes for a type III protein secretion system (TTSS). We identified two novel Hrp-secreted proteins, called PopF1 and PopF2, which display similarity to one another and to putative TTSS translocators, HrpF and NopX, from Xanthomonas spp. and rhizobia, respectively. They also show similariti...

متن کامل

Exposure to Umbelliferone Reduces Ralstonia solanacearum Biofilm Formation, Transcription of Type III Secretion System Regulators and Effectors and Virulence on Tobacco

Ralstonia solanacearum is one of the most devastating phytopathogens and causes bacterial wilt, which leads to severe economic loss due to its worldwide distribution and broad host range. Certain plant-derived compounds (PDCs) can impair bacterial virulence by suppressing pathogenic factors of R. solanacearum. However, the inhibitory mechanisms of PDCs in bacterial virulence remain largely unkn...

متن کامل

Oleanolic Acid Induces the Type III Secretion System of Ralstonia solanacearum

Ralstonia solanacearum, the causal agent of bacterial wilt, can naturally infect a wide range of host plants. The type III secretion system (T3SS) is a major virulence determinant in this bacterium. Studies have shown that plant-derived compounds are able to inhibit or induce the T3SS in some plant pathogenic bacteria, though no specific T3SS inhibitor or inducer has yet been identified in R. s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2013